B.Tech III Year II Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA 19AEE65a- ENERGY CONSERVATION & MANAGEMENT

(Open Elective-II)

L T P C 3 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- To understand energy efficiency, scope, conservation and technologies.
- To design energy efficient lighting systems.
- To estimate/calculate power factor of systems and propose suitable compensation Techniques.
- To understand energy conservation in HVAC systems.
- To calculate life cycle costing analysis and return on investment on energy efficient Technologies.

UNIT – I:

Basic Principles of Energy Audit and management Energy audit – Definitions – Concept– Types of audit – Energy index – Cost index – Pie charts – Sankey diagrams – Load profiles – Energy conservation schemes and energy saving potential – Numerical problems – Principles of energy management – Initiating, planning, controlling, promoting, monitoring, reporting – Energy manager – Qualities and functions – Language – Questionnaire – Check list for top management.

Learning Outcomes:

At the end of this unit, the student will be able to

• To know about various types of Energy Audit

- L1 L2
- To know about various types of Energy conservation schemes and Energy Manager functions

UNIT – II:

Lighting Modification of existing systems – Replacement of existing systems – Priorities: Definition of terms and units – Luminous efficiency – Polar curve – Calculation of illumination level – Illumination of inclined surface to beam – Luminance or brightness – Types of lighting – Electric lighting fittings (luminaries) – Flood lighting – White light LED and conducting Polymers – Energy conservation measures

Learning Outcomes:

At the end of this unit, the student will be able to

To know about various Lighting systems and types of lamps.

L1

L₂

• To evaluate illumination level Illumination of inclined surface to beam and Design of Energy efficient lighting systems.

UNIT – III:

Power Factor and energy instruments Power factor – Methods of improvement – Location of capacitors – Power factor with non linear loads – Effect of harmonics on Power factor – Numerical problems. Energy Instruments – Watt–hour meter – Data loggers – Thermocouples – Pyrometers – Lux meters – Tong testers – Power analyzer.

Learning Outcomes:

At the end of this unit, the student will be able to

To know about various Methods of Power Factor improvement

L1

• To know about various Energy Instruments

L3

UNIT – IV:

Space Heating and Ventilation Ventilation – Air–Conditioning (HVAC) and Water Heating: Introduction – Heating of buildings – Transfer of Heat–Space heating methods – Ventilation and air–conditioning – Insulation–Cooling load – Electric water heating systems – Energy conservation methods

poly

